Announcements

1) HW \#3 - one webwork question and written homework due Thursday next week.

Example 1: Solve

$$
2 y^{\prime \prime}-8 y=9 e^{3 t} \text { for } y
$$

Two solutions differ by a solution to

$$
2 y^{\prime \prime}-8 y=0, \text { first }
$$

solve the homogeneous equation.
Suppose $y=e^{r t}$. Then we get

$$
2 r^{2} e^{r t}-8 e^{r t}=0
$$

So $2 r^{2}-8=0$

$$
\begin{aligned}
& r^{2}=4 \\
& r= \pm 2 .
\end{aligned}
$$

Solutions to Homogeneous
Equation: $C_{1} e^{2 t}+C_{2} e^{-2 t}$

We just need one solution to

$$
2 y^{\prime \prime}-8 y=9 e^{3 t}
$$

any other solution will be obtained by adding $C_{1} e^{2 t}+C_{2} e^{-2 t}$ for some real numbers $C_{1}, C_{2}$.

We wish:
that a solution to the problem looks like

$$
y=u(t) e^{2 t}+v(t) e^{-2 t}
$$

for functions $U$ and $v$.

Then

$$
\begin{aligned}
y^{\prime}= & \left(u(t) e^{2 t}+v(t) e^{-2 t}\right)^{\prime} \\
= & u^{\prime}(t) e^{2 t}+2 u(t) e^{2 t} \\
& +v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t} \\
= & 2\left(u(t) e^{2 t}-v(t) e^{-2 t}\right) \\
& +\left(v^{\prime}(t) e^{-2 t}+u^{\prime}(t) e^{2 t}\right)
\end{aligned}
$$

I wish this to be zerol

If $v^{\prime}(t) e^{-2 t}+v^{\prime}(t) e^{2 t}=0$, then

$$
\begin{aligned}
& \text { then } \\
& y^{\prime}=2\left(u(t) e^{2 t}-v(t) e^{-2 t}\right) \text {, }
\end{aligned}
$$

so

$$
\begin{aligned}
y^{\prime \prime}= & =2\left(u^{\prime}(t) e^{2 t}+2 u(t) e^{2 t}\right. \\
& \left.-v^{\prime}(t) e^{-2 t}+2 v(t) e^{-2 t}\right)
\end{aligned}
$$

Plug back into original equation.

$$
\begin{aligned}
& 9 e^{3 t}=2 y^{\prime \prime}-8 y \\
& =4\left(u^{\prime}(t) e^{2 t}+2 u(t) e^{2 t}\right. \\
& \left.-v^{\prime}(t) e^{-2 t}+2 v(t) e^{-2 t}\right) \\
& -8\left(u(t) e^{2 t}+v(t) e^{-2 t}\right) \\
& =4 u^{\prime}(t) e^{2 t}+8 u(t) e^{2 t} \\
& -4 v^{\prime}(t) e^{-2 t}+8 v(t) e^{-2 t} \\
& -8 u(t) e^{2 t}-8 \times(t) e^{-2 t}
\end{aligned}
$$

We now have two equations

1) $u^{\prime}(t) e^{2 t}+v^{\prime}(t) e^{-2 t}=0$
2) $4 v^{\prime}(t) e^{2 t}-4 v^{\prime}(t) e^{-2 t}=9 e^{3 t}$

$$
u^{\prime}(t) e^{2 t}-v^{\prime}(t) e^{-2 t}=\frac{9}{4} e^{3 t}
$$

Add the two equations to get

$$
\begin{aligned}
& 2 u^{\prime}(t) e^{2 t}=\frac{9}{4} e^{3 t}, \text { so } \\
& u^{\prime}(t)=\frac{9}{8} e^{t}
\end{aligned}
$$

Subtracting 2) from 1),
we get

$$
\begin{aligned}
& 2 v^{\prime}(t) e^{-2 t}=-\frac{9}{4} e^{3 t} \\
& v^{\prime}(t)=-\frac{9}{8} e^{5 t}
\end{aligned}
$$

We have: $U^{\prime}(t)=\frac{9}{8} e^{t}$

$$
v^{\prime}(t)=-\frac{9}{8} e^{5 t}
$$

Integrating, we get

$$
\begin{aligned}
& \text { Integrating, we get } \\
& u(t)=\frac{9}{8} e^{t}, v(t)=\frac{9}{40} e^{5 t}
\end{aligned}
$$

A solution to $2 y^{\prime \prime}-8 y=9 e^{3 t}$ is given by

$$
y_{p}=\left(\frac{9}{8} e^{t}\right)\left(e^{2 t}\right)+\left(-\frac{9}{40} e^{5 t}\right)\left(e^{-2 t}\right)
$$

Simplifying,

$$
\begin{aligned}
y_{p} & =e^{3 t}\left(\frac{9}{\overline{8}}-\frac{9}{40}\right) \\
& =e^{3 t}\left(\frac{9}{10}\right)=\frac{9 e^{3 t}}{10}
\end{aligned}
$$

(subscript "p" stands for "particular"). Then a general solution is givenby

$$
y=\frac{9}{10} e^{3 t}+C_{1} e^{2 t}+C_{2} e^{-2 t}
$$

This trick is called
Variation of Parameters and it works for any nonhomogeneous, second order differential equation, as follows:

1) Find solutions to the homogeneous equation.
2) Given solutions $h$ and $g$ to the homogeneous system, assume that a solution yo to the nonhomogeneous system looks like

$$
y_{p}=v(t) h(t)+v(t) g(t)
$$

for some functions $U, v$ with

$$
v^{\prime}(t) h(t)+v^{\prime}(t) g(t)=0
$$

3) If the original equation is $a y^{\prime \prime}+b y^{\prime}+c y=f$, plug $y p$ into this equation. It will reduce to

$$
v^{\prime}(t) h^{\prime}(t)+v^{\prime}(t) g^{\prime}(t)=\frac{f(t)}{a}
$$

4) We now have two equations

$$
\begin{aligned}
& U^{\prime}(t) h(t)+v^{\prime}(t) g(t)=0 \\
& U^{\prime}(t) h^{\prime}(t)+v^{\prime}(t) g^{\prime}(t)=\frac{f(t)}{a}
\end{aligned}
$$

Multiply the first equation by $\frac{-g^{\prime}(t)}{g(t)}$, add to the second.
we get

$$
U^{\prime}(t)\left(-\frac{h(t) g^{\prime}(t)}{g(t)}+h^{\prime}(t)\right)=\frac{f(t)}{a}
$$

With a common denominator,

$$
u^{\prime}(t)\left(\frac{h^{\prime}(t) g(t)-h(t) g^{\prime}(t)}{g(t)}\right)=\frac{f(t)}{a}
$$

So

$$
\begin{aligned}
& \text { so } \\
& u^{\prime}(t)=\frac{1}{a} \frac{f(t) g(t)}{h^{\prime}(t) g(t)-h(t) g^{\prime}(t)}
\end{aligned}
$$

Integrate and solve for $U$.

Similarly,

$$
V^{\prime}(t)=\frac{1}{a} \frac{f(t) h(t)}{h(t) g^{\prime}(t)-h^{\prime}(t) g(t)}
$$

Integrate and solve for $v$.
Final solution:

$$
y=y_{p}+c_{1} h+c_{2} g
$$

